**REGULAR ARTICLE** 

# Bonding in cationic $MOH_n^+$ (M = K – La, Hf – Rn; n = 0-2): DFT performances and periodic trends

Xinhao Zhang · Helmut Schwarz

Received: 4 October 2010/Accepted: 17 November 2010/Published online: 12 December 2010 © Springer-Verlag 2010

**Abstract** The performances of the DFT functionals B3LYP, BHandHLYP, M06, M06-2X, PBE1PBE, TPSSh, X3LYP, and BP86 have been benchmarked with a thermochemistry database containing 50 bond dissociation energies (BDEs) of M–OH<sup>+</sup><sub>n</sub> complexes (n = 0–2). Among the tested methods, B3LYP was found to perform best both in accuracy and error distributions. Next, 162 BDEs (M<sup>+</sup>–OH<sub>n</sub>) (M = K – La, Hf – Rn; n = 0–2) are calculated at the B3LYP/def2-QZVP level of theory and their periodic trends are presented as an overview. Further, the H-atom affinities of MO<sup>+</sup> and MOH<sup>+</sup> are derived from the calculated BDEs.

**Keywords** Bond dissociation energy · M–O interaction · DFT · Benchmark · Periodic trends

# 1 Introduction

Oxides, hydroxides, and water complexes play important roles in catalysis, materials science, and biological systems. Knowledge of the bonding, especially the thermochemistry, of such species provides insight in understanding

Dedicated to Professor Pekka Pyykkö on the occasion of his 70th birthday and published as part of the Pyykkö Festschrift Issue.

**Electronic supplementary material** The online version of this article (doi:10.1007/s00214-010-0861-0) contains supplementary material, which is available to authorized users.

X. Zhang  $(\boxtimes) \cdot H$ . Schwarz  $(\boxtimes)$ 

Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany e-mail: Xinhao.Zhang@mail.chem.tu-berlin.de

H. Schwarz

e-mail: Helmut.Schwarz@mail.chem.tu-berlin.de URL: http://www.chem.tu-berlin.de/ reaction mechanism, may help to improve catalytic processes and to design novel materials. For instance, metal oxides comprise an important class of catalysts in methane activation [1–3]. The model studies of the gas-phase reactions of  $CH_4$  with gaseous metal-oxide  $MO^+$  cations [4–12] reveal the existence of three reaction channels (Eqs. 1–3):

$$\mathrm{MO}^{+} + \mathrm{CH}_4 \to \mathrm{M}^{+} + \mathrm{CH}_3\mathrm{OH} \tag{1}$$

$$MO^+ + CH_4 \rightarrow MOH^+ + CH_3$$
 (2)

$$\mathrm{MO^{+}} + \mathrm{CH_{4}} \rightarrow \mathrm{MCH_{2}^{+}} + \mathrm{H_{2}O} \tag{3}$$

Reaction (1) converts methane to methanol, reaction (2) is believed to constitute the crucial step in the oxidative coupling of methane, and formation of MCH<sub>2</sub> is of conceptual interest in the  $CH_4 \rightarrow CH_2O$  conversion. For different MO<sup>+</sup>, the branching ratios for reaction channels (1-3) largely depend on the thermochemistry, i.e. bond dissociation energy (BDE) of MO<sup>+</sup>, MOH<sup>+</sup>, or MCH<sub>2</sub><sup>+</sup>. With a weak Ni-O bond, NiO<sup>+</sup> undergoes exclusively reaction channel (1) to transfer an O atom to  $CH_4$  [13]. Channels (1) and (2) compete in the reaction between  $FeO^+$  and methane [14–17]. Driven by the strong Pt=CH<sub>2</sub><sup>+</sup> bond,  $PtO^+$  reacts with methane via channel (3) to give  $PtCH_2^+/H_2O$  [18, 19]. Due to their wide applications, transition metal oxides have formed the subject of numerous experimental and theoretical studies [20-29]. In contrast, main-group element oxides have received much less attention. However, methane activation by the main-group element oxides, e.g. MgO<sup>+</sup> [30], MO<sup>+</sup> (M = Ca, Sr or Ba) [31],  $[(Al_2O_3)_x]^+$  [32],  $SO_2^+$  [33],  $P_4O_{10}^+$  [34], and PbO<sup>+</sup> [35], has demonstrated recently the unexpected potential of s- and p-block element oxides.

Given the lack of experimentally derived BDEs of the M–O bonds in  $MOH_n^+$  (n = 0–2) for most of the main-

group elements and also for many transition metals, here we present a systematic theoretical study of the bonding of  $MOH_n^+$  (M = K – La, Hf – Rn; n = 0–2). In the first part of this work, we benchmark the performance of eight density-functional theory (DFT) methods, i.e. B3LYP [36–38], BHandHLYP [39], M06 [40], M06-2X [41], PBE1PBE [41], TPSSh [42], X3LYP [43], and BP86 [44]. After being validated by a comparison with experimental data, the most reliable method is used to predict the BDEs for  $MOH_n^+$  (Eqs. 4–6) in the second part. Finally, based on the calculated BDEs, periodic trends in bonding of M–OH<sub>n</sub><sup>+</sup> and new thermochemical information are presented.

$$MO^+ \rightarrow M^+ + O \quad BDE(M^+ - O)$$
 (4)

 $MOH^+ \rightarrow M^+ + OH \quad BDE(M^+ - OH)$  (5)

 $MOH_2^+ \rightarrow M^+ + H_2O \quad BDE(M^+ - OH_2) \tag{6}$ 

## 2 Computational details

# 2.1 Database for benchmark

To achieve a "mindless DFT benchmarking" which aims at excluding chemical biases and providing a more "universal" survey, Korth and Grimme proposed a diversityoriented approach to generate thermochemical benchmark sets [45]. Toward the same goal, we adopted a different strategy to address the "selection" problem by making no selections, including almost all of the experimental data currently available in the field. A database of 50 BDEs for  $MOH_n^+$  (n = 0-2) was constructed from the experimental data. It is composed of 32  $MOH_n^+$  systems from the 4th, 9  $MOH_n^+$  from the 5th, and 9  $MOH_n^+$  from the 6th row. In terms of the ligands O, OH and OH<sub>2</sub>, the database contains 26 MO<sup>+</sup>, 11 MOH<sup>+</sup>, and 13 MOH<sub>2</sub><sup>+</sup> examples. Moreover, 28 different metals M, mostly transition metals, are included. Details of these 50 BDEs are presented in the Tables 4, 5, 6, given in the next section. Most of the experimental data are derived from guided ion beam (GIB) mass spectrometry-based measurement performed in Armentrout's laboratory [46], on the ground that (1) GIB studies have proven quite reliable for deriving thermochemical data and have provided a large set of internally consistent data [47, 48], (2) discrepancies that may arise from using between different experimental techniques (e.g., collision induced dissociation or photodissociation) are avoided; thus, the systematic errors are minimized.

### 2.2 Methods

The accuracy of DFT for describing metal-ligand interactions has been benchmarked by different groups [49–57]. Many of these studies concluded that hybrid DFT methods, especially B3LYP, are best suited to account for the energetics of transition metal complexes [58-60]. However, B3LYP has also been reported to be incapable to describe some of the systems and, consequently, new functionals have been developed [61-70]. Here, we focus on the M-O interaction and we set out to probe if B3LYP is suitable to describe these systems properly. Therefore, we evaluated the performance of eight DFT functionals: B3LYP, BHandHLYP, M06, M06-2X, PBE1PBE, TPSSh, X3LYP, and BP86. Seven of them are hybrid functionals and the classic BP86 is chosen as a representative of a non-hybrid functional for comparison. For all eight functionals, the def2-QZVP basis sets [71], in which effective core potential (ECP) was used for 5th and 6th row elements [72-76], were employed. In addition, two other popular basis sets are used for B3LYP to examine the role of basis set effects. These two are denoted as BS-LA (Lanl2dz with ECP for M and 6-31G(d,p) for O and H) and BS-SDD (SDD with ECP for M and 6-31G(d,p) for O and H) [76].

In addition, all possible spin multiplicities were calculated for every  $MOH_n^+$  species investigated. For each spin state, geometry optimizations were started with at least three different initial structures, taking symmetry, bond length, etc., into account. In most cases, the eight functionals employed predict the same ground state for a given species. However, for systems having energetically comparable low-lying states, the different functionals assign different spin states to the ground state. As the energies of these near-degenerate states are rather close, the energetics between different states do not affect dramatically the BDE calculations. Frequencies were computed for all optimized structures with the corresponding optimization methods. Zero-point energy (ZPE) corrections were added without any scaling. For atomic cations M<sup>+</sup>, the ground states were examined by comparing with experiments [22]. All calculations were carried out by using the Gaussian 09 package [77].

#### 3 Results and discussion

#### 3.1 Benchmark

# 3.1.1 Performance for elements from different periods of the periodic table

The various errors of BDEs for the 4th, 5th, and 6th row  $MOH_n^+$  complexes are given in Table 1. Mean absolute error (MAE), mean error (ME), maximum error ( $E_{max}$ ), minimum error ( $E_{min}$ ), and root-mean-square deviation (rmsd) were chosen as parameters to evaluate the performance of the eight density functionals.

**Table 1** Errors (kJ mol<sup>-1</sup>) for the BDEs of the 4th, 5th, and 6th row  $MOH_n^+$  complexes

| Method <sup>a</sup> | MAE ME |      | E <sub>max</sub> | $\mathrm{E}_{\mathrm{min}}$ | rmsd |  |
|---------------------|--------|------|------------------|-----------------------------|------|--|
| 4th row             |        |      |                  |                             |      |  |
| B3LYP/def2-QZVP     | 17     | -4   | 46               | -65                         | 22   |  |
| B3LYP/BS-LA         | 48     | -14  | 127              | -205                        | 71   |  |
| B3LYP/BS-SDD        | 35     | 2    | 63               | -181                        | 51   |  |
| BHandHLYP           | 63     | -60  | 22               | -209                        | 63   |  |
| M06                 | 29     | -8   | 54               | -124                        | 38   |  |
| M06-2X              | 36     | -22  | 36               | -151                        | 47   |  |
| PBE1PBE             | 23     | -11  | 38               | -103                        | 29   |  |
| TPSSh               | 20     | 10   | 59               | -44                         | 23   |  |
| X3LYP               | 18     | -4   | 46               | -71                         | 24   |  |
| BP86                | 41     | 39   | 116              | -20                         | 31   |  |
| 5th row             |        |      |                  |                             |      |  |
| B3LYP/def2-QZVP     | 17     | -13  | 11               | -60                         | 19   |  |
| B3LYP/BS-LA         | 82     | -67  | 52               | -203                        | 80   |  |
| B3LYP/BS-SDD        | 23     | -17  | 29               | -54                         | 21   |  |
| BHandHLYP           | 103    | -103 | -12              | -165                        | 54   |  |
| M06                 | 25     | 10   | 45               | -51                         | 28   |  |
| M06-2X              | 33     | -29  | 12               | -81                         | 31   |  |
| PBE1PBE             | 20     | -20  | -1               | -75                         | 21   |  |
| TPSSh               | 14     | -5   | 11               | -68                         | 23   |  |
| X3LYP               | 18     | -16  | 7                | -62                         | 19   |  |
| BP86                | 58     | 58   | 115              | 1                           | 38   |  |
| 6th row             |        |      |                  |                             |      |  |
| B3LYP/def2-QZVP     | 25     | 9    | 36               | -59                         | 29   |  |
| B3LYP/BS-LA         | 78     | -42  | 61               | -278                        | 120  |  |
| B3LYP/BS-SDD        | 17     | -2   | 34               | -46                         | 22   |  |
| BHandHLYP           | 79     | -79  | -29              | -119                        | 26   |  |
| M06                 | 25     | 16   | 73               | -28                         | 32   |  |
| M06-2X              | 28     | -15  | 29               | -59                         | 27   |  |
| PBE1PBE             | 20     | 0    | 29               | -46                         | 25   |  |
| TPSSh               | 27     | 18   | 55               | -33                         | 25   |  |
| X3LYP               | 24     | 7    | 34               | -59                         | 28   |  |
| BP86                | 85     | 79   | 114              | -29                         | 47   |  |

<sup>a</sup> The def2-QZVP basis sets with ECP are used unless otherwise noted

With the same def2-QZVP basis sets, the functionals B3LYP, PBE1PBE, TPSSh, and X3LYP give similar MAEs of around 20 kJ mol<sup>-1</sup>; for M06 and M06-2X, the MAEs are a slightly larger centering around 30 kJ mol<sup>-1</sup>; BP86 performs much worse than the above hybrid functionals in two aspects: the MAEs are larger and the MAEs increase dramatically from the 4th row down to the 6th row; finally, BHandHLYP exhibits the largest MAE up to 103 kJ mol<sup>-1</sup>. The large MAE of BHandHLYP for the MOH<sub>n</sub><sup>+</sup> system is somewhat surprising, because this method performed much better than B3LYP for describing the BDEs of various MCH<sub>3</sub><sup>+</sup> systems [49]. On the other

hand, the MAEs of BHandHLYP are consistent with Truhlar's benchmark study using the MLBE21/05 database [54]. When a large proportion of  $M-OH_n$  complexes were included in the database, BHandHLYP was also found to have the largest MAE of ca.  $80 \text{ kJ mol}^{-1}$  in the BDE calculations [54]. This indicates that BHandHLYP is not appropriate for describing the M-O bonding systems, and a universally applicable functional does not seem to exist. Two other popular basis sets were used for the B3LYP calculations. Only for the 6th row complexes  $MOH_n^+$ , BS-SDD gives a smaller MAE than those obtained in the def2-OZVP calculations. For other cases, BS-LA and BS-SDD cannot compete with def2-QZVP. The rather poor performance of BS-LA is largely due to their neglecting d- and f-functions for main-group elements [78] and transition metals [79], respectively. In particular, for  $BDE(Ca^+-O)$ , BDE(Ca<sup>+</sup>-OH), BDE(Sr<sup>+</sup>-O), BDE(Sr<sup>+</sup>-OH), BDE (Ba<sup>+</sup>-O), and BDE(Ba<sup>+</sup>-OH), B3LYP/BS-LA results in errors as large as -205, -169, -203, -192, -246, and -278 kJ mol<sup>-1</sup>, respectively. Thus, caution is indicated to use Lanl2dz to describe the alkaline-earth element bond energies to O and OH ligands, without including d-functions.

The negative MEs further show that most of the tested hybrid DFT methods, especially BHandHLYP, tend to underestimate BDE. This effect is less pronounced for the 6th row  $MOH_n^+$ . In contrast, BP86 tends to overestimate BDE.

 $E_{max}$ ,  $E_{min}$ , and rmsd indicate the error spread of each method. B3LYP, PBE1PBE, TPSSh, and X3LYP are comparable to each other. Furthermore, these four functionals with def2-QZVP basis set perform constantly well as indicated by both MAE and rmsd for all complexes from the three periods, thus showing that the relativistic effects [80–85] are well described for the 5th and 6th row elements by the ECPs. On the other hand, ignoring the effects of relativity for the 4th row elements does not affect much the binding energy calculation either. This may suggest fortuitous error compensation.

## 3.1.2 Performance for different ligand systems

The errors for the BDEs of different ligand systems, i.e. oxides (MO<sup>+</sup>), hydroxides (MOH<sup>+</sup>), and water complexes (MOH<sub>2</sub><sup>+</sup>) are listed in Table 2. The data in Table 2 clearly reveals the origin of the errors. Hybrid DFT methods often underestimate BDEs because exact exchange favors high-spin over low-spin states, i.e. atomic cations and dissociated ligands versus ligated complexes. With the smallest fraction of exact exchange, i.e. 10%, among all the tested hybrid functionals, TPSSh is the only hybrid functional which overestimates BDEs, thus giving positive MEs, for the three  $MOH_n^+$  (n = 0–2) systems. For all other hybrid

functionals tested, due to the preference for the high-spin atomic cation and the open-shell triplet O atom (or the doublet OH), most of the MEs of BDE(M<sup>+</sup>-O) and  $BDE(M^+-OH)$  are negative. For the water complexes  $MOH_2^+$ , dissociation of the singlet water ligand hardly affects the spin state of the system. Therefore, for this system positive MEs are obtained for most of the functionals except BHandHLYP. As expected, the non-hybrid functional BP86 results in overbinding for all systems. Interestingly, BHandHLYP performs worst for BDE(M<sup>+</sup>-O) and best for  $BDE(M^+-OH_2)$ , as shown in Table 2. Not as poor are the performances of M06 and M06-2X in calculating the BDE(M<sup>+</sup>–O). B3LYP, PBE1PBE, TPSSh, and X3LYP exhibit reasonable accuracy for all three  $MOH_n^+$ (n = 0-2) systems. More importantly, as seen from  $E_{max}$ , Emin, and rmsd, the error spread of these four functionals are rather narrow, implying that these functionals may be suitable in calculating relative energies because of the cancelation of the systematic errors. This is important for those calculations that involve two-state-reactivity scenarios [86–92], e.g. reactions with  $O_2$  [93–103].

#### 3.1.3 Overall performance

In Table 3, we summarize the overall performance of the eight functionals tested for calculating the BDEs of  $MOH_n^+$ , and in Fig. 1, the mean error (ME) of 50 BDEs is plotted as a function of the fraction of exact exchange (mixing coefficients of HF-exchange, X). Excluding M06 and M06-2X, one obtains a linear relationship (with  $R^2 = 0.9746$ ) between the ME and the exact exchange admixture of the remaining five hybrid functionals tested and the non-hybrid BP86 (X = 0%). Reiher and coworkers reported that the energy splitting between different spin states of Fe(II)-sulfur complexes depends linearly on the exact exchange admixture parameter c3 [104]. In the present work, the hybrid DFT preference on the high-spin states (right sides of Eqs. 4 and 5) was reflected by the mean error in calculating the BDEs. Even for a relatively large test set containing as many as 50 BDEs, a linear relationship exists. To achieve ME = 0 in predicting the BDEs of  $MOH_n^+$ , an admixture of ca.18% is suggested; this value is close to the optimal range of 10-15% as proposed by Reiher et al. [104]. As shown in Fig. 1, M06 and M06-2X do not fit the linear relationship, thus indicating that the preference of HF-exchange on high-spin states was somehow compensated in the functional design [40, 65-67].

Concerning the accuracy, the non-hybrid BP86 functional performs worst when compared to all tested hybrid functionals except BHandHLYP. M06 and M06-2X give much better results than BHandHLYP, but are not as good as the other four hybrid functionals. Although M06 was parameterized for transition metal and nonmetal systems

Table 2 Errors  $(kJ mol^{-1})$  for the BDEs of different ligand systems  $MO^+$ ,  $MOH^+$ , and  $MOH_2^+$ 

| Method <sup>a</sup> | MAE | ME   | E <sub>max</sub> | $\mathbf{E}_{\min}$ | rmsd |  |
|---------------------|-----|------|------------------|---------------------|------|--|
| $MO^+$              |     |      |                  |                     |      |  |
| B3LYP/def2-QZVP     | 20  | -6   | 36               | -65                 | 25   |  |
| B3LYP/BS-LA         | 65  | -46  | 61               | -246                | 82   |  |
| B3LYP/BS-SDD        | 32  | -25  | 34               | -181                | 43   |  |
| BHandHLYP           | 111 | -111 | -29              | -209                | 48   |  |
| M06                 | 33  | -1   | 73               | -124                | 45   |  |
| M06-2X              | 49  | -44  | 29               | -151                | 45   |  |
| PBE1PBE             | 26  | -19  | 29               | -103                | 29   |  |
| TPSSh               | 19  | 7    | 55               | -68                 | 24   |  |
| X3LYP               | 21  | -10  | 34               | -71                 | 25   |  |
| BP86                | 75  | 75   | 116              | 13                  | 31   |  |
| $MOH^+$             |     |      |                  |                     |      |  |
| B3LYP/def2-QZVP     | 20  | -10  | 16               | -59                 | 23   |  |
| B3LYP/BS-LA         | 78  | -61  | 45               | -278                | 100  |  |
| B3LYP/BS-SDD        | 15  | 2    | 47               | -46                 | 22   |  |
| BHandHLYP           | 60  | -60  | -25              | -90                 | 22   |  |
| M06                 | 28  | -1   | 54               | -45                 | 32   |  |
| M06-2X              | 18  | -10  | 16               | -38                 | 18   |  |
| PBE1PBE             | 23  | -14  | 20               | -51                 | 24   |  |
| TPSSh               | 23  | 8    | 41               | -33                 | 26   |  |
| X3LYP               | 20  | -10  | 15               | -59                 | 22   |  |
| BP86                | 39  | 34   | 85               | -29                 | 27   |  |
| $MOH_2^+$           |     |      |                  |                     |      |  |
| B3LYP/def2-QZVP     | 15  | 9    | 46               | -25                 | 18   |  |
| B3LYP/BS-LA         | 34  | 34   | 127              | 2                   | 31   |  |
| B3LYP/BS-SDD        | 39  | 39   | 63               | 9                   | 16   |  |
| BHandHLYP           | 9   | -2   | 22               | -28                 | 12   |  |
| M06                 | 14  | 1    | 54               | -32                 | 21   |  |
| M06-2X              | 16  | 12   | 36               | -18                 | 16   |  |
| PBE1PBE             | 13  | 9    | 38               | -23                 | 16   |  |
| TPSSh               | 19  | 14   | 59               | -22                 | 23   |  |
| X3LYP               | 16  | 11   | 46               | -23                 | 18   |  |
| BP86                | 17  | 13   | 65               | -20                 | 20   |  |
|                     |     |      |                  |                     |      |  |

<sup>a</sup> The def2-QZVP basis sets with ECP are used unless otherwise noted

while M06-2X was designed for the main-group thermochemistry, the difference between M06 and M06-2X in calculating BDEs of  $\text{MOH}_n^+$  is not very significant. For our database containing 28 metals, the performance of M06-2X is still acceptable. Within the rather small energy regime of only a few kJ mol<sup>-1</sup>, it is difficult to conclude which functional performs best among B3LYP, PBE1PBE, TPSSh, and X3LYP. Considering the accuracy (MAE and ME), the error distribution ( $\text{E}_{\text{max}} - \text{E}_{\text{min}}$ , and rmsd), and the excellent performance of B3LYP/def2-QZVP in predicting BDE(M<sup>+</sup>-CH<sub>2</sub>) (M = K - La, Hf - Rn) [105],

Table 3 Errors  $(kJ mol^{-1})$  for the BDEs of the whole test set

| Method <sup>a</sup> | MAE | ME  | E <sub>max</sub> | E <sub>min</sub> | rmsd |
|---------------------|-----|-----|------------------|------------------|------|
| B3LYP/def2-QZVP     | 19  | -3  | 46               | -65              | 24   |
| B3LYP/BS-LA         | 60  | -29 | 127              | -278             | 86   |
| B3LYP/BS-SDD        | 30  | -2  | 63               | -181             | 43   |
| BHandHLYP           | 73  | -71 | 22               | -209             | 59   |
| M06                 | 27  | 0   | 73               | -124             | 37   |
| M06-2X              | 34  | -22 | 36               | -151             | 42   |
| PBE1PBE             | 22  | -11 | 38               | -103             | 28   |
| TPSSh               | 20  | 9   | 59               | -68              | 24   |
| X3LYP               | 19  | -4  | 46               | -71              | 25   |
| BP86                | 52  | 50  | 116              | -29              | 39   |
|                     |     |     |                  |                  |      |

<sup>a</sup> The def2-QZVP basis sets with ECP are used unless otherwise noted



Fig. 1 Correlation between the ME (kJ mol<sup>-1</sup>) and the percentage of exact exchange (X, %) of functionals

we chose this method for the following calculations of the  $MOH_n^+$  complexes (M = K - La, Hf - Rn; n = 0-2).

## 3.2 Bond dissociation energy

#### 3.2.1 Theoretically derived BDEs

Tables 4, 5, and 6 list the spin multiplicities of the ground states (2S + 1), the bond distances of M–O ( $d_{M-O}$ ), the BDEs calculated at B3LYP/def-QZVP (BDE<sub>b3lyp</sub>) as well as the experimental BDEs (BDE<sub>exp</sub>) of MOH<sup>+</sup><sub>n</sub> (M = K - La, Hf - Rn; n = 0–2). All the BDE<sub>exp</sub> shown in Tables 4, 5, and 6, except for BDE(Pd<sup>+</sup>–O)<sub>exp</sub> and BDE(Ag<sup>+</sup>–O)<sub>exp</sub>, constituted the database for our benchmarking. Before turning to the thermochemistry, let us take a glance at the geometries. For MO<sup>+</sup> and MOH<sup>+</sup>, most of the calculated M–O bond lengths,  $d_{M-O}$ , are in good agreement with data derived from Pyykkö's

covalent radii approach [106–108]. The  $d_{M-O}$  of MO<sup>+</sup> refers to a double bonded radii model [107], and the  $d_{M-\Omega}$ of MOH<sup>+</sup> refer to a single bonded radii model [108]. There are two exceptions: the  $d_{M-O}$  of groups 1 and 13 is longer, and the  $d_{M-O}$  of M-Oes 4-6 list the ground states, bond distance of M-OE groups 2-6 is shorter than those based on the covalent radii model. The lengthening is due to the fact that group  $1(ns^0)$  and group 13  $(np^0)$  M<sup>+</sup> cations cannot offer valence electron to form strong covalent interactions with an O atom or an OH radical. On the other hand, shortening of the M-O bonds is a consequence of the ionic bonding character and the empty d orbital of  $M^+$  that enhances the M–O interaction. The MO bonds for the early transition metal MO<sup>+</sup> cations were proposed to correspond to a triple bond [109-113]. Indeed, our calculated  $d_{\rm M-O}$  for group 2–6 are close to those derived from the triple bonded radii model [106].

The largest absolute error in Tables 4, 5 and 6 amounts to 65 kJ mol<sup>-1</sup> for BDE(Cr<sup>+</sup>–O). Various BDE(Cr<sup>+</sup>–O) values, i.e. 340 [24], 303 [25], 289 [26], 294(def2-QZVP), 251(BS-LA), and 312(BS-SDD) kJ mol<sup>-1</sup>, respectively, have been calculated at B3LYP with different basis sets. Although Miliordos and Mavridis have demonstrated that incorporation of scalar relativistic and core correlation effects improved the performance of MRCI in calculating  $BDE(Cr^+-O)$  [113], the origin of the error of B3LYP for Cr is not yet completely understood [136]. Another large absolute error (60 kJ mol<sup>-1</sup>) concerns the BDE(Zr<sup>+</sup>–O). However, in this case, the BDE(Zr<sup>+</sup>–O)<sub>exp</sub> seems to fall out of the trends that are regarded as representative for neighboring oxides in the periodic table. Therefore, a deeper theoretical analysis as well as independent measurements is indicated before definitive conclusions about the quality of the present DFT calculation should be made.

When comparing the theoretical and experimental thermochemical data, one encounters challenges not only for the B3LYP calculations [137] but also the experimental results. For instance, large discrepancies between BDE<sub>b3lyp</sub> and  $BDE_{exp}$  were reported for PdO<sup>+</sup> and AgO<sup>+</sup>, and the  $BDE(Pd^+-O)$  and  $BDE(Ag^+-O)$  have not been included in our database because there are good reasons to be skeptical about the quality of the experimental results. The BDE(Pd<sup>+</sup>-O)<sub>exp</sub> and BDE(Ag<sup>+</sup>-O)<sub>exp</sub> were determined from the kinetic energy onset for the formation of MO<sup>+</sup> in the ion-molecule reaction (IMR) of M<sup>+</sup> with O<sub>2</sub>. The IMR of Pd<sup>+</sup> with O<sub>2</sub> was assigned to a direct mechanism, while the reaction of  $Ag^+$  with  $O_2$  was interpreted in terms of an impulsive pairwise mechanism [120]. However, in reality, both reactions may well occur via these two mechanisms in a competitive fashion. As a result, when only one of the mechanisms is taken into account, the BDE(Pd<sup>+</sup>-O)<sub>exp</sub> is underestimated and the BDE(Ag<sup>+</sup>-O)<sub>exp</sub> is overestimated; a BDE(Ag<sup>+</sup>–O)<sub>exp</sub> of  $119 \pm 8$  kJ mol<sup>-1</sup> has been

**Table 4** Computed ground states (2S + 1), bond distances of M–O ( $d_{M-O}$ , in Å), BDEs (BDE<sub>b3lyp</sub>, in kJ mol<sup>-1</sup>) and experimental BDEs (BDE<sub>exp</sub>, in kJ mol<sup>-1</sup>) of MO<sup>+</sup>

|                        | $2S + 1^a$ | $d_{\mathrm{M-O}}$ | $BDE_{b3lyp}$ | BDE <sub>exp</sub>   |                  | $2S + 1^a$ | $d_{\mathrm{M-O}}$ | $BDE_{b3lyp}$ | BDE <sub>exp</sub>                   |                        | $2S + 1^a$ | $d_{\mathrm{M-O}}$ | $BDE_{b3lyp}$ | BDE <sub>exp</sub> |
|------------------------|------------|--------------------|---------------|----------------------|------------------|------------|--------------------|---------------|--------------------------------------|------------------------|------------|--------------------|---------------|--------------------|
| KO <sup>+</sup>        | 3/1        | 2.974              | 17            |                      | $RbO^+$          | 3/1        | 3.201              | 13            |                                      | $CsO^+$                | 3/1        | 3.466              | 10            |                    |
| $CaO^+$                | 2/2        | 1.873              | 340           | $344\pm5^{\text{b}}$ | $\mathrm{SrO}^+$ | 2/2        | 1.997              | 323           | $335\pm6^{\rm f}$                    | $\operatorname{BaO}^+$ | 2/2        | 2.100              | 380           | $396\pm19^{\rm j}$ |
| $ScO^+$                | 1/3        | 1.612              | 658           | $689\pm6^{c}$        | $YO^+$           | 1/1        | 1.745              | 679           | $699 \pm 17^{\rm g}$                 | $LaO^+$                | 1/3        | 1.856              | 727           |                    |
| $\mathrm{TiO}^+$       | 2/4        | 1.565              | 646           | $664\pm7^{c}$        | $ZrO^+$          | 2/4        | 1.681              | 689           | $749 \pm 11^{\rm g}$                 | $\mathrm{HfO}^+$       | 2/2        | 1.700              | 692           | $667 \pm 11^k$     |
| $VO^+$                 | 3/5        | 1.560              | 541           | $564 \pm 15^{c}$     | $NbO^+$          | 3/5        | 1.648              | 695           | $688 \pm 17^g$                       | $\mathrm{TaO}^+$       | 3/5        | 1.669              | 713           | $685 \pm 12^k$     |
| $CrO^+$                | 4/6        | 1.592              | 294           | $359\pm12^{c}$       | $MoO^+$          | 4/6        | 1.623              | 499           | $488\pm2^{g}$                        | $WO^+$                 | 4/6        | 1.642              | 689           | $653\pm7^k$        |
| $MnO^+$                | 5/7        | 1.729              | 268           | $285 \pm 13^{c}$     | $TcO^+$          | 3/7        | 1.629              | 382           |                                      | $\mathrm{ReO}^+$       | 5/7        | 1.679              | 428           | $427\pm71^{\rm l}$ |
| $\mathrm{FeO}^+$       | 6/6        | 1.637              | 336           | $335\pm6^{c}$        | $RuO^+$          | 4/4        | 1.669              | 353           | $368\pm5^{h}$                        | $OsO^+$                | 6/6        | 1.729              | 433           | $418\pm51^{m}$     |
| $CoO^+$                | 5/3        | 1.635              | 308           | $314\pm5^c$          | $RhO^+$          | 3/3        | 1.651              | 280           | $291\pm6^{\rm h}$                    | $IrO^+$                | 5/5        | 1.724              | 415           |                    |
| $NiO^+$                | 4/2        | 1.638              | 224           | $264\pm5^c$          | $PdO^+$          | 2/2        | 1.782              | 207           | $\textit{141} \pm \textit{11}^{h,i}$ | $PtO^+$                | 4/2        | 1.735              | 328           | $315\pm7^n$        |
| $\mathrm{CuO}^+$       | 3/1        | 1.792              | 131           | $130\pm12^d$         | $AgO^+$          | 3/1        | 2.194              | 64            | $119\pm5^{\rm h,i}$                  | $\operatorname{AuO}^+$ | 3/1        | 1.892              | 144           | $108\pm8^o$        |
| $ZnO^+$                | 2/2        | 1.803              | 157           | $161\pm5^{e}$        | $CdO^+$          | 2/2        | 2.009              | 110           |                                      | $\mathrm{HgO}^+$       | 2/2        | 1.999              | 96            |                    |
| $GaO^+$                | 3/1        | 1.907              | 30            |                      | $InO^+$          | 3/1        | 2.208              | 12            |                                      | $TlO^+$                | 3/1        | 2.988              | 0             |                    |
| ${\rm GeO}^+$          | 2/2        | 1.655              | 346           |                      | $\mathrm{SnO}^+$ | 2/2        | 1.860              | 285           |                                      | $PbO^+$                | 2/2        | 1.966              | 242           |                    |
| $AsO^+$                | 1/3        | 1.565              | 616           |                      | $SbO^+$          | 1/3        | 1.762              | 495           |                                      | $\operatorname{BiO}^+$ | 1/3        | 1.853              | 428           |                    |
| $SeO^+$                | 2/4        | 1.579              | 404           |                      | $TeO^+$          | 2/4        | 1.765              | 333           |                                      | $PoO^+$                | 2/4        | 1.862              | 279           |                    |
| $\operatorname{BrO}^+$ | 3/3        | 1.637              | 394           |                      | $\mathrm{IO}^+$  | 3/3        | 1.801              | 338           |                                      | $AtO^+$                | 3/3        | 1.901              | 295           |                    |
| KrO <sup>+</sup>       | 2/2        | 1.798              | 210           |                      | $XeO^+$          | 2/2        | 1.924              | 185           |                                      | $RnO^+$                | 2/2        | 2.012              | 168           |                    |

<sup>a</sup> State of MO<sup>+</sup>/state of M<sup>+</sup>. The atomic ground states are consistent with experiments [22]. Details of electron configuration and total energy of atomic cations are available in supplementary material; <sup>b</sup> [114]; <sup>c</sup> [115]; <sup>d</sup> [116]; <sup>e</sup> [117]; <sup>f</sup> [118]; <sup>g</sup> [119]; <sup>h</sup> [120]; <sup>i</sup> not included in test set; <sup>j</sup> [121]; <sup>k</sup> [122]; <sup>1</sup> [123]; <sup>m</sup> [124]; <sup>n</sup> [125]; <sup>o</sup> [126]

**Table 5** Computed ground states (2S + 1), bond distances of M–O ( $d_{M-O}$ , in Å), BDEs (BDE<sub>b3lyp</sub>, in kJ mol<sup>-1</sup>) and experimental BDEs (BDE<sub>exp</sub>, in kJ mol<sup>-1</sup>) of MOH<sup>+</sup>

|                         | 2S + 1 | $d_{\mathrm{M-O}}$ | BDE <sub>b3lyp</sub> | BDE <sub>exp</sub>      |                   | 2S + 1 | $d_{\text{M-O}}$ | BDE <sub>b3lyp</sub> | BDE <sub>exp</sub> |                         | 2S + 1 | $d_{\mathrm{M-O}}$ | $BDE_{b3lyp}$ | BDE <sub>exp</sub> |
|-------------------------|--------|--------------------|----------------------|-------------------------|-------------------|--------|------------------|----------------------|--------------------|-------------------------|--------|--------------------|---------------|--------------------|
| KOH <sup>+</sup>        | 2      | 2.677              | 47                   |                         | $RbOH^+$          | 2      | 2.886            | 40                   |                    | $\mathrm{CsOH}^+$       | 2      | 3.086              | 36            |                    |
| $CaOH^+$                | 1      | 1.892              | 457                  | $444 \pm 29^a$          | $SrOH^+$          | 1      | 2.023            | 428                  | $444 \pm 19^a$     | $\operatorname{BaOH}^+$ | 1      | 2.144              | 472           | $531 \pm 19^{a}$   |
| $\mathrm{ScOH}^+$       | 2      | 1.766              | 471                  | $499 \pm 9^{\text{b}}$  | $\mathrm{YOH}^+$  | 2      | 1.894            | 538                  |                    | $LaOH^+$                | 2      | 2.032              | 518           |                    |
| $\mathrm{TiOH}^+$       | 3      | 1.738              | 473                  | $465\pm12^{b}$          | $ZrOH^+$          | 3      | 1.829            | 546                  |                    | $\mathrm{HfOH}^+$       | 1      | 1.804              | 547           |                    |
| $\rm VOH^+$             | 4      | 1.728              | 406                  | $434\pm14^{b}$          | $NbOH^+$          | 4      | 1.786            | 490                  |                    | $TaOH^+$                | 4      | 1.782              | 525           |                    |
| $\mathrm{CrOH}^+$       | 5      | 1.751              | 267                  | $298\pm14^c$            | $\mathrm{MoOH}^+$ | 5      | 1.846            | 323                  |                    | $\mathrm{WOH}^+$        | 5      | 1.814              | 468           |                    |
| $\mathrm{MnOH}^+$       | 6      | 1.754              | 323                  | $332\pm24^{\rm c}$      | $\mathrm{TcOH}^+$ | 6      | 1.852            | 348                  |                    | $\operatorname{ReOH}^+$ | 6      | 1.844              | 336           |                    |
| $\mathrm{FeOH}^+$       | 5      | 1.716              | 371                  | $366 \pm 12^{d}$        | $\rm RuOH^+$      | 5      | 1.877            | 249                  |                    | $OsOH^+$                | 5      | 1.839              | 323           |                    |
| $\mathrm{CoOH}^+$       | 4      | 1.726              | 316                  | $302\pm4^e$             | $RhOH^+$          | 4      | 1.875            | 214                  |                    | $IrOH^+$                | 4      | 1.839              | 332           |                    |
| $\rm NiOH^+$            | 3      | 1.707              | 252                  | $236 \pm 19^{\text{b}}$ | $PdOH^+$          | 3      | 1.876            | 188                  |                    | $PtOH^+$                | 3      | 1.841              | 277           |                    |
| $\mathrm{CuOH}^+$       | 2      | 1.801              | 162                  |                         | $AgOH^+$          | 2      | 2.200            | 95                   |                    | ${\rm AuOH^+}$          | 2      | 1.976              | 152           |                    |
| $\operatorname{ZnOH}^+$ | 1      | 1.765              | 228                  |                         | $CdOH^+$          | 1      | 1.970            | 168                  |                    | $HgOH^+$                | 1      | 1.984              | 150           |                    |
| $GaOH^+$                | 2      | 1.788              | 102                  |                         | $InOH^+$          | 2      | 2.067            | 61                   |                    | $T1OH^+$                | 2      | 2.763              | 47            |                    |
| ${\rm GeOH^+}$          | 1      | 1.672              | 504                  |                         | $SnOH^+$          | 1      | 1.875            | 426                  |                    | $PbOH^+$                | 1      | 1.998              | 375           |                    |
| $AsOH^+$                | 2      | 1.691              | 451                  |                         | $SbOH^+$          | 2      | 1.889            | 384                  |                    | $\operatorname{BiOH}^+$ | 2      | 1.998              | 340           |                    |
| $SeOH^+$                | 1      | 1.700              | 342                  |                         | $\mathrm{TeOH}^+$ | 3      | 1.886            | 301                  |                    | $\operatorname{PoOH}^+$ | 3      | 1.997              | 266           |                    |
| $BrOH^+$                | 2      | 1.732              | 343                  |                         | $\rm IOH^+$       | 2      | 1.902            | 292                  |                    | $AtOH^+$                | 2      | 2.006              | 260           |                    |
| KrOH <sup>+</sup>       | 1      | 1.847              | 262                  |                         | $\rm XeOH^+$      | 1      | 1.973            | 224                  |                    | $RnOH^+$                | 1      | 2.057              | 205           |                    |

<sup>a</sup> [121]; <sup>b</sup> [127]; <sup>c</sup> [115]; <sup>d</sup> [128]; <sup>e</sup> [129]

suggested as a preliminary value [120]. Also, a theoretical paper called for a revision of the BDE( $Ag^+-O$ )<sub>exp</sub>, and a BDE( $Ag^+-O$ ) = 45 kJ mol<sup>-1</sup>, calculated at CCSD(T), has

 $\overline{\textcircled{D}}$  Springer

been reported [138]. For PdO<sup>+</sup>, our recent work on the methane activation by  $MO^+$  (M = Ni, Pd, Pt) [13] indicated that the BDE(Pd<sup>+</sup>-O)<sub>exp</sub> (141 kJ mol<sup>-1</sup>) [120] is too

**Table 6** Computed ground states (2S + 1), bond distances of M–O ( $d_{M-O}$ , in Å), BDEs (BDE<sub>b3lyp</sub>, in kJ mol<sup>-1</sup>) and experimental BDEs (BDE<sub>exp</sub>, in kJ mol<sup>-1</sup>) of MOH<sub>2</sub><sup>+</sup>

|                                | 2S + 1 | $d_{\rm M-O}$ | $BDE_{b3lyp}$ | $\text{BDE}_{\text{exp}}$ |                     | 2S + 1 | $d_{\rm M-O}$ | $BDE_{b3lyp}$ | $\text{BDE}_{\text{exp}}$ |                     | 2S + 1 | $d_{\rm M-O}$ | $BDE_{b3lyp}$ | BDE <sub>exp</sub> |
|--------------------------------|--------|---------------|---------------|---------------------------|---------------------|--------|---------------|---------------|---------------------------|---------------------|--------|---------------|---------------|--------------------|
| KOH <sub>2</sub> <sup>+</sup>  | 1      | 2.622         | 68            | 71 <sup>a</sup>           | $RbOH_2^+$          | 1      | 2.823         | 58            |                           | $\mathrm{CsOH_2}^+$ | 1      | 3.005         | 51            |                    |
| ${\rm CaOH_2}^+$               | 2      | 2.299         | 117           | 121 <sup>b</sup>          | $\mathrm{SrOH_2}^+$ | 2      | 2.493         | 95            |                           | $\mathrm{BaOH_2}^+$ | 2      | 2.658         | 89            |                    |
| $\mathrm{ScOH_2}^+$            | 3      | 2.169         | 155           | 131 <sup>c</sup>          | $\mathrm{YOH_2}^+$  | 1      | 2.237         | 145           |                           | $\mathrm{LaOH_2}^+$ | 3      | 2.507         | 123           |                    |
| $\mathrm{TiOH_2}^+$            | 4      | 2.098         | 177           | $154\pm6^{\rm d}$         | $\mathrm{ZrOH_2}^+$ | 4      | 2.197         | 139           |                           | $\mathrm{HfOH_2}^+$ | 2      | 2.144         | 139           |                    |
| $\mathrm{VOH_2}^+$             | 5      | 2.066         | 154           | $147 \pm 5^{d}$           | $\mathrm{NbOH_2}^+$ | 5      | 2.141         | 166           |                           | ${\rm TaOH_2}^+$    | 5      | 2.123         | 152           |                    |
| $\mathrm{CrOH_2}^+$            | 6      | 2.080         | 139           | $129\pm9^{d}$             | $\mathrm{MoOH_2}^+$ | 6      | 2.186         | 138           |                           | $\mathrm{WOH_2}^+$  | 6      | 2.119         | 202           |                    |
| $\mathrm{MnOH_2}^+$            | 7      | 2.178         | 118           | $119\pm6^{d}$             | $\mathrm{TcOH_2}^+$ | 5      | 2.150         | 104           |                           | ${\rm ReOH_2}^+$    | 7      | 2.431         | 95            |                    |
| $\mathrm{FeOH_2}^+$            | 4      | 2.002         | 174           | $128\pm5^{e}$             | ${\rm RuOH_2}^+$    | 4      | 2.171         | 140           |                           | $\mathrm{OsOH_2}^+$ | 4      | 2.084         | 108           |                    |
| $\mathrm{CoOH_2}^+$            | 3      | 1.967         | 193           | $161 \pm 6^d$             | $\mathrm{RhOH_2}^+$ | 3      | 2.165         | 143           |                           | $\mathrm{IrOH_2}^+$ | 3      | 2.071         | 179           |                    |
| $NiOH_2^+$                     | 2      | 1.946         | 181           | $180\pm3^d$               | $\mathrm{PdOH_2}^+$ | 2      | 2.188         | 129           |                           | $PtOH_2^+$          | 2      | 2.096         | 185           |                    |
| ${\rm CuOH_2}^+$               | 1      | 1.942         | 168           | $157\pm8^{d}$             | $\mathrm{AgOH_2}^+$ | 1      | 2.217         | 125           | $131\pm8^{\rm f}$         | ${\rm AuOH_2}^+$    | 1      | 2.153         | 157           |                    |
| $ZnOH_2^+$                     | 2      | 2.055         | 138           | 163 <sup>c</sup>          | $\mathrm{CdOH_2}^+$ | 2      | 2.315         | 107           |                           | $\mathrm{HgOH_2}^+$ | 2      | 2.379         | 111           |                    |
| ${\rm GaOH_2}^+$               | 1      | 2.254         | 98            |                           | ${\rm InOH_2}^+$    | 1      | 2.496         | 80            |                           | $\mathrm{TlOH_2}^+$ | 1      | 2.616         | 73            |                    |
| ${\rm GeOH_2}^+$               | 2      | 2.061         | 166           |                           | $\mathrm{SnOH_2}^+$ | 2      | 2.295         | 131           |                           | $\mathrm{PbOH_2}^+$ | 2      | 2.419         | 117           |                    |
| $\mathrm{AsOH_2}^+$            | 3      | 2.013         | 218           |                           | $\mathrm{SbOH_2}^+$ | 3      | 2.226         | 171           |                           | $\mathrm{BiOH_2}^+$ | 3      | 2.340         | 153           |                    |
| $\mathrm{SeOH_2}^+$            | 2      | 1.912         | 129           |                           | $\mathrm{TeOH_2}^+$ | 2      | 2.122         | 84            |                           | $\mathrm{PoOH_2}^+$ | 4      | 2.774         | 68            |                    |
| $\operatorname{BrOH}_2^+$      | 1      | 1.912         | 231           |                           | $\mathrm{IOH_2}^+$  | 1      | 2.108         | 157           |                           | $\mathrm{AtOH_2}^+$ | 1      | 2.214         | 128           |                    |
| KrOH <sub>2</sub> <sup>+</sup> | 2      | 2.465         | 258           |                           | ${\rm XeOH_2}^+$    | 2      | 2.583         | 165           |                           | ${\rm RnOH_2}^+$    | 2      | 2.631         | 138           |                    |

<sup>a</sup> [130]; <sup>b</sup> [131]; <sup>c</sup> [132]; <sup>d</sup> [133]; <sup>e</sup> [134]; <sup>f</sup> [135]

low and does not fit the periodic trends noted [13]. Furthermore, comparing the BDE(Ni<sup>+</sup>–S)<sub>exp</sub> (237 kJ mol<sup>-1</sup>) [139] with the BDE(Pd<sup>+</sup>–S)<sub>exp</sub> (228 kJ mol<sup>-1</sup>) [140], and the BDE(Ni<sup>+</sup>-CH<sub>2</sub>)<sub>exp</sub> (308 kJ mol<sup>-1</sup>) [141] with the  $BDE(Pd^+-CH_2)_{exp}$  (284 kJ mol<sup>-1</sup>) [46], the BDE(Pd^+-O) is expected to be close to the BDE(Ni<sup>+</sup>–O) (264 kJ mol<sup>-1</sup>) [115]. Here, the inconsistencies between theory and experiment reveal an interesting interplay: while theory is validated by experiment, it also suggests an experimental re-investigation [142, 143]. A similar situation has been met for the intriguing case of  $BDE(Pd^+-CH_2I)$ [144]. /Para>For those BDEs( $M^+$ -OH<sub>n</sub>) for which no experimental data are at hand, we recommend our predicted BDEs as a reference. For example, the BDE (Cu<sup>+</sup>-OH)exp has not been measured yet. We predict the BDE  $(Cu^+-OH)_{b3lyp}$  (162 kJ mol<sup>-1</sup>) to be slightly lower than the BDE (Cu<sup>+</sup>–OH<sub>2</sub>)<sub>b3lyp</sub> (168 kJ mol<sup>-1</sup>). This trend is in agreement with a collisionally activated dissociation study of  $[Cu(OH)(H_2O)]^+$  in which the loss of OH is slightly favored over the evaporation of  $H_2O$  [145].

# 3.2.2 Trends

In Fig. 2, all of the calculated BDEs( $M^+$ –OH<sub>n</sub>) (M = K - La, Hf – Rn; n = 0–2) are plotted. The periodic trend is similar to that reported recently for the BDEs( $M^+$ –CH<sub>2</sub>) (M = K - La, Hf – Rn) [105]. The M–O covalent bond of

d-block transition metals increases from the 4th row down to the 6th row, while the corresponding covalent bonds of p-block  $MOH_n^+$  systems decrease from top to bottom. For the water complexes, in which dative bonds are mainly involved, periodic trends along the periods are not very obvious. One aspect deserves mentioning: due to the lone pair on O atom which can donate to empty orbitals of  $M^+$ , and the electronegativity difference of O and CH<sub>2</sub>, the binding preference for O when compared with CH<sub>2</sub> is shifted to early transition metals and "early" p-block elements. Owing to the high oxophilicity of early transition metals, the double-humped shape of the trend for d-block elements is not so obvious. In some cases, e.g. BDEs(M<sup>+</sup>-O) (M = Y - Cd), the trend becomes single-humped. Currently, there is a lack of experimental BDE data for those  $MOH^+$  and  $MOH_2^+$  complexes derived from metals that belong to the 5th and the 6th row. The trend of the BDEs $(M^+-OH_n)_{exp}$  for the transition metals in the 4th row has been analyzed in detail by different groups [23, 146, 147]. A comparison between different periods may provide a more comprehensive picture [148].

#### 3.2.3 Hydrogen-atom affinity

As illustrated in the thermochemistry network [149] shown in Scheme 1, two other important BDEs,  $BDE(MO^+-H)$  and  $BDE(MOH^+-H)$ , can be derived from Eqs. 7 and 8.

**Fig. 2** Periodic trends in the calculated BDEs( $M^+$ –OH<sub>n</sub>) (in kJ mol<sup>-1</sup>)





Scheme 1

$$MOH^+ \rightarrow MO^+ + H \quad BDE(MO^+ - H)$$
 (7)

$$MOH_2^+ \rightarrow MOH^+ + H \quad BDE(MOH^+ - H)$$
 (8)

Due to the difficulties of directly measuring  $BDE(MO^+-H)$  and  $BDE(MOH^+-H)$ , these "experimental" values are derived from Eqs. 9 and 10.

$$BDE(MO^{+} - H) = BDE(M^{+} - OH) - BDE(M^{+} - O)$$
$$+ BDE(O - H)$$
(9)

$$BDE(MOH^{+}-H) = BDE(M^{+}-OH_{2}) - BDE(M^{+}-OH) + BDE(HO-H)$$
(10)

Although the theoretical and the experimental values for  $BDE(MO^+-H)$  and  $BDE(MOH^+-H)$  are derived from

different thermochemical cycles, the theoretical ones are in good agreement with those obtained from the experiments; for instance, the experimental values, reported by Beauchamp and co-worker, for BDE(CrO<sup>+</sup>– H), BDE(FeO<sup>+</sup>–H), and BDE(CoO<sup>+</sup>–H) are  $372 \pm 21$ ,  $444 \pm 17$ , and  $448 \pm 17$  kJ mol<sup>-1</sup>, respectively [150].

The BDE( $MO^+$ –H) and BDE( $MOH^+$ –H) are defined as the H-atom affinity (HAA) of MO<sup>+</sup> and MOH<sup>+</sup>, respectively. Inspired by the remarkable periodic table of the covalent radii as proposed by Pyykkö [106-108], here we also present the H-atom affinities of MO<sup>+</sup> and MOH<sup>+</sup> in form of a periodic table (see Fig. 3). Since H-atom affinities play a prominent role in many important reactions, e.g. C-H bond activation [1, 151], water splitting [152, 153], fuel cells [154], and aerobic oxidation [155, 156], the Table in Fig. 3 might provide hints in designing new catalysts and materials. An example of using H-atom affinity has been reported quite recently [35]. In this study, we plotted the HAA of  $MO^+$ versus the BDE( $M^+$ –OH), which reflects the stability of MOH<sup>+</sup>. From this figure (Fig. 1 in Ref. [35]), we concluded that the group 14 element oxides  $MO^+$  (M = Ge, Sn and Pb) belong to the same category as  $MO^+$  with M = Mn [157], Fe [14–17], Ca, Sr, and Ba [31]. All these binary oxides are capable to abstract a hydrogen atom from methane at room temperature. The theoretical finding suggested that GeO<sup>+</sup>,

|                                                                  | $\begin{bmatrix} 257 \\ H \end{bmatrix}$ H-atom affinity of MO <sup>+</sup> kJ mol <sup>-1</sup> (Eq. 7) |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| H-atom affinity of MOH <sup>*</sup> kJ mol <sup>-1</sup> (Eq. 8) |                                                                                                          |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 460                                                              | 548                                                                                                      | 242 | 257 | 295 | 403 | 486 | 465 | 438 | 458 | 461 | 501 | 502 | 588 | 265 | 368 | 380 | 481 |
| Κ                                                                | Ca                                                                                                       | Sc  | Ti  | V   | Cr  | Mn  | Fe  | Со  | Ni  | Cu  | Zn  | Ga  | Ge  | As  | Se  | Br  | Kr  |
| 501                                                              | 139                                                                                                      | 164 | 183 | 227 | 351 | 274 | 282 | 356 | 409 | 485 | 389 | 475 | 141 | 246 | 266 | 367 | 476 |
| 457                                                              | 536                                                                                                      | 288 | 287 | 225 | 254 | 395 | 326 | 364 | 411 | 461 | 488 | 478 | 571 | 318 | 398 | 385 | 470 |
| Rb                                                               | Sr                                                                                                       | Υ   | Zr  | Nb  | Мо  | Тс  | Ru  | Rh  | Pd  | Ag  | Cd  | In  | Sn  | Sb  | Те  | I   | Xe  |
| 498                                                              | 146                                                                                                      | 86  | 72  | 156 | 294 | 236 | 370 | 408 | 420 | 509 | 418 | 499 | 184 | 266 | 262 | 344 | 420 |
| 456                                                              | 522                                                                                                      | 220 | 285 | 242 | 208 | 338 | 320 | 347 | 379 | 438 | 484 | 477 | 563 | 342 | 416 | 394 | 467 |
| Cs                                                               | Ва                                                                                                       | La  | Hf  | Та  | W   | Re  | Os  | Ir  | Pt  | Au  | Hg  | ТΙ  | Pb  | Bi  | Po  | At  | Rn  |
| 494                                                              | 96                                                                                                       | 85  | 71  | 107 | 214 | 239 | 264 | 327 | 388 | 484 | 441 | 505 | 222 | 292 | 282 | 348 | 413 |

**Fig. 3** Computed H-atom affinity of  $MO^+$  and  $MOH^+$  (in kJ mol<sup>-1</sup>)

 $SnO^+$ , and  $PbO^+$  are promising candidates as well for methane activation. In fact, this prediction was confirmed in a recent gas-phase experiment [35].

As mentioned earlier, numerous studies in the field of  $\text{MOH}_n^+$  were conducted in sophisticated ways to understand a single subject in great a detail. In the present work, inspired by Pyykkö's studies [106–108, 158–160], we used calculations to provide an overview. We trust that Figs. 2 and 3 provide some general information that can hardly be obtained from separate measurements or calculations.

# 4 Conclusions

Our DFT survey on the bonding of  $MOH_n^+$  (M = K – La, Hf – Rn; n = 0-2) can be summarized as follows:

- 1. Seven hybrid DFT functionals, B3LYP, BHandHLYP, M06, M06-2X, PBE1PBE, TPSSh, and X3LYP, together with the non-hybrid functional BP86, have been benchmarked with a thermochemistry database containing 50 BDEs of M–OH<sub>n</sub><sup>+</sup>. Most of the hybrid functionals perform better than BP86 in the study. The MAE and rmsd of B3LYP, PBE1PBE, TPSSh, and X3LYP are very close to each other. With a slight advantage, B3LYP/def2-QZVP was found to be the most reliable one among the functionals tested. This method predicts BDE(M<sup>+</sup>–OH<sub>n</sub>) with reasonable accuracy and error distributions (MAE = 19 kJ mol<sup>-1</sup> and rmsd = 24 kJ mol<sup>-1</sup>).
- All tested hybrid functionals except TPSSh underestimated the BDEs, while BP86 overestimated the BDEs, as expected. For B3LYP, BHandHLYP, PBE1PBE, TPSSh, X3LYP, and BP86, the MEs linearly depend on the percentage of the exact exchange of the functionals.
- 3. Compared with BS-LA and BS-SDD, the Ahlrichs' new basis set, def2-QZVP, improves significantly the performance of B3LYP.
- 4. One hundred and sixty-two BDEs of  $M^+$ -OH<sub>n</sub> (M = K La, Hf Rn; n = 0-2) are calculated at B3LYP/def2-QZVP and their periodic trends are presented. By comparing the BDE<sub>b3lyp</sub> and BDE<sub>exp</sub>, not only existing difficulties of theory were revealed also errors in the experimental studies were indicated. At this stage, the present computationally derived results may serve as a reference for unknown BDEs with some likely errors.
- 5. H-atom affinities of MO<sup>+</sup> and MOH<sup>+</sup> are derived from the calculated BDEs. An application of using these properties to search for candidates for methane activation has been reviewed.

Acknowledgments Financial support by the *Fonds der Chemischen Industrie*, the *Deutsche Forschungsgemeinschaft* ("Cluster of Excellence: Unifying Concepts in Catalysis") and, for computational resources, the Institut für Mathematik at the Technische Universität Berlin are acknowledged. We thank Dr. Detlef Schröder and Burkhard Butschke for helpful suggestions. X. Z. is grateful to the *Alexander von Humboldt-Stiftung* for a postdoctoral fellowship.

#### References

- 1. Lunsford JH (1995) Angew Chem Int Ed 34(9):970-980
- 2. Arndtsen BA, Bergman RG, Mobley TA, Peterson TH (1995) Acc Chem Res 28(3):154–162
- 3. Labinger JA (2004) J Mol Catal A Chem 220(1):27-35
- 4. Schröder D, Schwarz H (1995) Angew Chem Int Ed 34(18):1973–1995
- 5. Schwarz H, Schröder D (2000) Pure Appl Chem 72(12): 2319–2332
- 6. O'Hair RAJ, Khairallah GN (2004) J Cluster Sci 15(3):331-363
- 7. Böhme DK, Schwarz H (2005) Angew Chem Int Ed 44(16):2336–2354
- Johnson GE, Tyo EC, Castleman AW (2008) Proc Natl Acad Sci USA 105(47):18108–18113
- Schröder D, Schwarz H (2008) Proc Natl Acad Sci USA 105(47):18114–18119
- 10. Schlangen M, Schwarz H (2009) Dalton Trans 46:10155-10165
- 11. Roithová J, Schröder D (2009) Chem Rev 110(2):1170-1211
- 12. Schwarz H (2010) Angew Chem Int Ed Engl (accepted)
- Božović A, Feil S, Koyanagi G, Viggiano A, Zhang X, Schlangen M, Schwarz H, Bohme D (2010) Chem Eur J 16(38): 11605–11610
- 14. Schröder D, Schwarz H (1990) Angew Chem Int Ed 29(12):1433–1434
- Schröder D, Fiedler A, Hrušák J, Schwarz H (1992) J Am Chem Soc 114(4):1215–1222
- Schröder D, Schwarz H, Clemmer DE, Chen Y, Armentrout PB, Baranov VI, Böhme DK (1997) Int J Mass Spectrom Ion Processes 161(1–3):175–191
- 17. Shiota Y, Yoshizawa K (2003) J Chem Phys 118(13):5872-5879
- Wesendrup R, Schröder D, Schwarz H (1994) Angew Chem Int Ed Engl 33(11):1174–1176
- Pavlov M, Blomberg MRA, Siegbahn PEM, Wesendrup R, Heinemann C, Schwarz H (1997) J Phys Chem A 101(8): 1567–1579
- 20. Ryan MF, Stöckigt D, Schwarz H (1994) J Am Chem Soc 116(21):9565–9570
- Koyanagi GK, Caraiman D, Blagojevic V, Bohme DK (2002) J Phys Chem A 106(18):4581–4590
- Lavrov VV, Blagojevic V, Koyanagi GK, Orlova G, Bohme DK (2004) J Phys Chem A 108(26):5610–5624
- 23. Gong Y, Zhou M, Andrews L (2009) Chem Rev 109(12): 6765–6808
- 24. Shiota Y, Yoshizawa K (2000) J Am Chem Soc 122(49): 12317–12326
- 25. Nakao Y, Hirao K, Taketsugu T (2001) J Chem Phys 114(18): 7935–7940
- 26. Gutsev GL, Andrews L, Bauschlicher CW (2003) Theor Chem Acc 109(6):298–308
- 27. Schofield K (2006) J Phys Chem A 110(21):6938-6947
- Song P, Guan W, Yao C, Su Z, Wu Z, Feng J, Yan L (2007) Theor Chem Acc 117(3):407–415
- 29. Yao C, Guan W, Song P, Su Z, Feng J, Yan L, Wu Z (2007) Theor Chem Acc 117(1):115–122

- Schröder D, Roithová J (2006) Angew Chem Int Ed 45(34):5705–5708
- 31. Božović A, Bohme DK (2009) Phys Chem Chem Phys 11(28):5940–5951
- Feyel S, Döbler J, Höckendorf R, Beyer MK, Sauer J, Schwarz H (2008) Angew Chem Int Ed Engl 47(10):1946–1950
- de Petris G, Troiani A, Rosi M, Angelini G, Ursini O (2009) Chem Eur J 15(17):4248–4252
- 34. Dietl N, Engeser M, Schwarz H (2009) Angew Chem Int Ed 48(26):4861–4863
- 35. Zhang X, Schwarz H (2010) ChemCatChem 2(11):1391–1394
- 36. Becke AD (1988) Phys Rev A 38(6):3098–3100
- 37. Lee C, Yang W, Parr RG (1988) Phys Rev B 37(2):785-789
- 38. Becke AD (1993) J Chem Phys 98(7):5648-5652
- 39. Becke AD (1993) J Chem Phys 98(2):1372-1377
- 40. Zhao Y, Truhlar D (2008) Theor Chem Acc 120(1):215–241
- 41. Ernzerhof M, Perdew JP (1998) J Chem Phys 109(9):3313-3320
- Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91(14):146401
- 43. Xu X, Goddard WA (2004) Proc Natl Acad Sci USA 101(9):2673–2677
- 44. Perdew JP (1986) Phys Rev B 33(12):8822-8824
- 45. Korth M, Grimme S (2009) J Chem Theory Comput 5(4):993–1003
- 46. Armentrout PB (2003) Int J Mass Spectrom 227(3):289-302
- 47. Rodgers MT, Armentrout PB (2004) Acc Chem Res 37(12):989–998
- Armentrout PB, Ervin KM, Rodgers MT (2008) J Phys Chem A 112(41):10071–10085
- Holthausen MC, Heinemann C, Cornehl HH, Koch W, Schwarz H (1995) J Chem Phys 102(12):4931–4941
- 50. Holthausen MC, Mohr M, Koch W (1995) Chem Phys Lett 240(4):245–252
- 51. Holthausen MC (2005) J Comput Chem 26(14):1505-1518
- 52. Baker J, Pulay P (2003) J Comput Chem 24(10):1184-1191
- 53. de Jong GT, Sola M, Visscher L, Bickelhaupt FM (2004) J Chem Phys 121(20):9982–9992
- 54. Schultz NE, Zhao Y, Truhlar DG (2005) J Phys Chem A 109(49):11127–11143
- Quintal MM, Karton A, Iron MA, Boese AD, Martin JML (2006) J Phys Chem A 110(2):709–716
- 56. Furche F, Perdew JP (2006) J Chem Phys 124(4):044103-044127
- 57. Jensen KP, Roos BO, Ryde U (2007) J Chem Phys 126(1):014103–014114
- 58. Niu S, Hall MB (2000) Chem Rev 100(2):353-406
- 59. Harrison JF (2000) Chem Rev 100(2):679-716
- 60. Cramer CJ, Truhlar DG (2009) Phys Chem Chem Phys 11(46):10757–10816
- Zhao Y, González-García N, Truhlar DG (2005) J Phys Chem A 109(9):2012–2018
- 62. Paier J, Marsman M, Kresse G (2007) J Chem Phys 127(2):024103–024110
- Cramer CJ, Gour JR, Kinal A, Wloch M, Piecuch P, Moughal Shahi AR, Gagliardi L (2008) J Phys Chem A 112(16): 3754–3767
- Butschke B, Schröder D, Schwarz H (2009) Organometallics 28(15):4340–4349
- 65. Zhao Y, Schultz NE, Truhlar DG (2005) J Chem Phys 123(16):161103–161104
- Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2(2):364–382
- 67. Zhao Y, Truhlar DG (2008) Acc Chem Res 41(2):157-167
- 68. Grimme S (2006) J Comput Chem 27(15):1787-1799
- 69. Schwabe T, Grimme S (2007) Phys Chem Chem Phys 9(26):3397–3406

- 70. Schwabe T, Grimme S (2008) Acc Chem Res 41(4):569–579
- 71. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7(18):3297–3305
- Andrae D, Häußermann U, Dolg M, Stoll H, Preuß H (1990) Theor Chim Acta 77(2):123–141
- Leininger T, Nicklass A, Stoll H, Dolg M, Schwerdtfeger P (1996) J Chem Phys 105(3):1052–1059
- 74. Metz B, Stoll H, Dolg M (2000) J Chem Phys 113(7):2563-2569
- 75. Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) J Chem Phys 119(21):11113–11123
- Dunning TH Jr, Hay PJ (1976) In: Schaefer III HF (ed) Modern theoretical chemistry, vol 3. Plenum, New York, pp 1–28
- 77. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J, J. A., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian, Inc., Wallingford CT
- Höllwarth A, Böhme M, Dapprich S, Ehlers AW, Gobbi A, Jonas V, Köhler KF, Stegmann R, Veldkamp A, Frenking G (1993) Chem Phys Lett 208(3–4):237–240
- 79. Ehlers AW, Böhme M, Dapprich S, Gobbi A, Höllwarth A, Jonas V, Köhler KF, Stegmann R, Veldkamp A, Frenking G (1993) Chem Phys Lett 208(1–2):111–114
- 80. Pyykkö P (1988) Chem Rev 88(3):563-594
- Hrušák J, Hertwig RH, Schröder D, Schwerdtfeger P, Koch W, Schwarz H (1995) Organometallics 14(3):1284–1291
- Heinemann C, Schwarz H, Koch W, Dyall KG (1996) J Chem Phys 104(12):4642–4651
- Schröder D, Schwarz H, Hrušák J, Pyykkö P (1998) Inorg Chem 37(4):624–632
- 84. Pyykkö P (2002) Angew Chem Int Ed Engl 41(19):3573-3578
- 85. Schwarz H (2003) Angew Chem Int Ed Engl 42(37):4442-4454
- 86. Armentrout PB (1990) Annu Rev Phys Chem 41(1):313-344
- 87. Armentrout PB (1991) Science 251(4990):175-179
- Schröder D, Shaik S, Schwarz H (2000) Acc Chem Res 33(3):139–145
- 89. Schwarz H (2004) Int J Mass Spectrom 237(1):75-105
- 90. Poli R (2004) J Organomet Chem 689(24):4291-4304
- 91. Harvey JN (2007) Phys Chem Chem Phys 9(3):331-343
- 92. Harvey JN, Aschi M, Schwarz H, Koch W (1998) Theor Chem Acc 99(2):95–99
- 93. Landis CR, Morales CM, Stahl SS (2004) J Am Chem Soc 126(50):16302–16303
- 94. Keith JM, Nielsen RJ, Oxgaard J, Goddard WA (2005) J Am Chem Soc 127(38):13172–13179
- 95. Popp B, Wendlandt J, Landis CR, Stahl SS (2007) Angew Chem Int Ed 46(4):601–604
- 96. Keith JM, Goddard WA (2009) J Am Chem Soc 131(4):1416–1425
- Popp BV, Morales CM, Landis CR, Stahl SS (2010) Inorg Chem 49(18):8200–8207
- Lanci MP, Brinkley DW, Stone KL, Smirnov VV, Roth JP (2005) Angew Chem Int Ed Engl 44(44):7273–7276
- 99. Wang R, Zhang XH, Chen SJ, Yu X, Wang CS, Beach DB, Wu YD, Xue ZL (2005) J Am Chem Soc 127(14):5204–5211

- 100. Chen SJ, Zhang XH, Yu X, Qiu H, Yap GPA, Guzei IA, Lin Z, Wu YD, Xue ZL (2007) J Am Chem Soc 129(46):14408–14421
- 101. Huber S, Ertem M, Aquilante F, Gagliardi L, Tolman W, Cramer C (2009) Chem Eur J 15(19):4886–4895
- 102. Yu H, Fu Y, Guo Q, Lin Z (2009) Organometallics 28(15):4443–4451
- 103. Zhang X, Schlangen M, Baik M-H, Dede Y, Schwarz H (2009) Helv Chim Acta 92(1):151–164
- 104. Reiher M, Salomon O, Hess BA (2001) Theor Chem Acc 107(1):48–55
- 105. Zhang X, Schwarz H (2010) Chem Eur J 16(20):5882-5888
- 106. Pyykkö P, Riedel S, Patzschke M (2005) Chem Eur J 11(12):3511–3520
- 107. Pyykkö P, Atsumi M (2009) Chem Eur J 15(1):186-197
- 108. Pyykkö P, Atsumi M (2009) Chem Eur J 15(46):12770-12779
- 109. Carter EA, Goddard WA (1988) J Phys Chem 92(8):2109-2115
- 110. Carter EA, Goddard WA (1988) J Phys Chem 92(20): 5679-5683
- 111. Schröder D, Schwarz H, Harvey JN (2000) J Phys Chem A 104(48):11257–11260
- 112. Miliordos E, Mavridis A (2007) J Phys Chem A 111(10): 1953-1965
- 113. Miliordos E, Mavridis A (2010) J Phys Chem A 114(33): 8536–8572
- 114. Fisher ER, Elkind JL, Clemmer DE, Georgiadis R, Loh SK, Aristov N, Sunderlin LS, Armentrout PB (1990) J Chem Phys 93(4):2676–2691
- 115. Armentrout PB, Kickel BL, (1996) in Organometallic Ion Chemistry, Ed. Freiser BS (Kluwer, Dordrecht, 1996) 1
- 116. Rodgers MT, Walker B, Armentrout PB (1999) Int J Mass Spectrom 182–183:99–120
- 117. Clemmer DE, Dalleska NF, Armentrout PB (1991) J Chem Phys 95(10):7263–7268
- 118. Dalleska NF, Armentrout PB (1994) Int J Mass Spectrom Ion Processes 134(2-3):203-212
- 119. Sievers MR, Chen Y-M, Armentrout PB (1996) J Chem Phys 105(15):6322–6333
- 120. Chen Y-M, Armentrout PB (1995) J Chem Phys 103(2):618-625
- 121. Murad E (1981) J Chem Phys 75(8):4080–4085
- 122. Hinton CS, Li F, Armentrout PB (2009) Int J Mass Spectrom 280(1-3):226-234
- 123. Irikura KK, Beauchamp JL (1991) J Phys Chem 95(21): 8344–8351
- 124. Irikura KK, Beauchamp JL (1989) J Am Chem Soc 111(1):75–85
- 125. Zhang XG, Armentrout PB (2003) J Phys Chem A 107(42):8904–8914
- 126. Li FX, Gorham K, Armentrout PB (2010) J Phys Chem A 114(42):11043–11052
- 127. Clemmer DE, Aristov N, Armentrout PB (1993) J Phys Chem 97(3):544–552
- 128. Clemmer DE, Chen Y-M, Khan FA, Armentrout PB (1994) J Phys Chem 98(26):6522–6529
- 129. Chen Y-M, Clemmer DE, Armentrout PB (1994) J Am Chem Soc 116(17):7815–7826

- 130. Dzidic I, Kebarle P (1970) J Phys Chem 74(7):1466-1474
- 131. Kochanski E, Constantin E (1987) J Chem Phys 87(3): 1661–1665
- 132. Magnera TF, David DE, Michl J (1989) J Am Chem Soc 111(11):4100-4101
- Dalleska NF, Honma K, Sunderlin LS, Armentrout PB (1994) J Am Chem Soc 116(8):3519–3528
- 134. Schultz RH, Armentrout PB (1993) J Phys Chem 97(3):596-603
- Koizumi H, Larson M, Muntean F, Armentrout PB (2003) Int J Mass Spectrom 228(2–3):221–235
- 136. Li S, Dixon DA (2007) J Phys Chem A 111(46):11908-11921
- 137. Bauschlicher CW, Gutsev GL (2002) Theor Chem Acc 107(5):309–312
- 138. Cundari TR, Harvey JN, Klinckman TR, Fu W (1999) Inorg Chem 38(24):5611–5615
- Rue C, Armentrout PB, Kretzschmar I, Schröder D, Schwarz H (2002) J Phys Chem A 106(42):9788–9797
- 140. Armentrout PB, Kretzschmar I (2009) Inorg Chem 48(21):10371–10382
- 141. Liu F, Zhang X-G, Armentrout PB (2005) Phys Chem Chem Phys 7(5):1054–1064
- 142. Roithová J, Schröder D (2009) Coord Chem Rev 253(5-6): 666-677
- 143. Lin Z (2010) Acc Chem Res 43(5):602-611
- 144. Schwarz J, Schröder D, Schwarz H, Heinemann C, Hrušák J (1996) Helv Chim Acta 79(4):1110–1120
- 145. Vukomanovic D, Stone JA (2000) Int J Mass Spectrom 202(1–3):251–259
- 146. Ricca A, Bauschlicher CW (1997) J Phys Chem A 101(47):8949–8955
- 147. Schröder D, Souvi SO, Alikhani E (2009) Chem Phys Lett 470(4-6):162-165
- 148. Cheng P, Koyanagi GK, Bohme DK (2007) J Phys Chem A 111(35):8561–8573
- 149. Schröder D (2008) J Phys Chem A 112(50):13215-13224
- 150. Kang H, Beauchamp JL (1986) J Am Chem Soc 108(24): 7502–7509
- 151. Janardanan D, Wang Y, Schyman P, Que L, Shaik S (2010) Angew Chem Int Ed 49(19):3342–3345
- 152. Gilbert JA, Eggleston DS, Murphy WR, Geselowitz DA, Gersten SW, Hodgson DJ, Meyer TJ (1985) J Am Chem Soc 107(13):3855–3864
- 153. Yang X, Baik M-H (2006) J Am Chem Soc 128(23):7476-7485
- 154. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) J Phys Chem B 108(46): 17886–17892
- 155. Stahl SS (2004) Angew Chem Int Ed Engl 43(26):3400-3420
- 156. Stahl SS (2005) Science 309(5742):1824-1826
- 157. Ryan MF, Fiedler A, Schröder D, Schwarz H (1995) J Am Chem Soc 117(7):2033–2040
- 158. de Macedo LGM, Pyykkö P (2008) Chem Phys Lett 462(1–3): 138–143
- 159. Roos BO, Pyykkö P (2010) Chem Eur J 16(1):270–275
- 160. Pyykkö P (2010) Phys Chem Chem Phys. doi:10.1039/ C0CP01575J